# T9 help! 1

August 14, 2017

.5pt; background: white;”>Question
1Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Vind ‘n 99% vertrouensinterval vir die verwagte eksamenpunt indien die
toetspunt 70 is. /Find
a 99% confidence interval for the expected examination mark if the test mark is
70.

[68.92 ; 81.91]

[69.19 ; 81.65]

[69.97 ; 80.87]

[63.86 ; 86.98]

[71.147 ; 79.70]

Question
2‘n Pearsonkorrelasiekoëffisiënt van 0 (r=0) vir die veranderlikes X en Y
impliseer dat:/ A
Pearson correlation coefficient of 0 (r=0) for the variables X and Y implies
that:

1. daar geen verwantskap tussen X en Y is nie. /there is no relationship between X and Y.2. X en Y nie gekorreleerd is nie. /X and Y is not correlated3.
daar
‘n gebrek aan lineariteit tussen X en Y is. /there is a lack of linearity between X and Y.

(i) & (ii)

(i) & (ii) & (iii)

(ii) & (iii)

(ii)

Geeneen van bogenoemde. / None of the
above

Question
3‘n Eenvoudige lineêre regressie analise vir n =
20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n
= 20 data points produced the following results:

?= 2.1 + 3.4x? x = 50
? y = 212 SXX = 4.77 SXY =16.22 SYY=
59.21

Bepaal SSE. / Find SSE.

4.0552

25.148

42.992

49.193

185.094

Question
4Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Toets betekenisvolle regressie. Op ? = 0.01 is die tabel waarde________ . /Test for significance regression. At ? =
0.01 the table
value is ________ .

2.306

3.169

2.228

3.355

1.397

Question
5‘n Eenvoudige lineêre regressie analise vir n =
20 data punte het die volgende resultate gelewer: /A simple linear regression analysis for n
=20 data points produced the following results:

?= 2.1 + 3.4x? x = 50 ? y =
212 SXX = 4.77 SXY =16.22 SYY=
59.21

Bepaal ‘n 95% vertrouensinterval vir ?as x = 3.0 /Find a 95% confidence interval for ? when
x = 3.0.

[11.9809 ; 12.6191]

[10.3848 ; 10.8340]

[10.5763 ; 10.6237]

[10.1258 ; 11.0742]

[10.3767 ; 10.8233]

Question
6Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Vind die vergelyking van die regressielyn wat gebruik kan word om eksamenpunte
te beraam vanaf toetspunte./Find the equation of the regression line which can be used to estimate
examination marks from test marks.

? =
29.13 – 0.66x

? =
0.66 + 29.13x

? =
0.66 – 29.13x

? =
29.13 + 0.66x

? =
79.8 – 81.9x

Question
7Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y). /The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Vind ‘n 90% vertrouensinterval vir die verwagte
eksamenpunt indien die toetspunt 70 is./Find a 90% confidence interval for the expected examination mark if the
test mark is 70.

[71.97 ; 78.87]

[69.19 ; 81.65]

[6901 ; 81.83]

[71.14 ; 79.70]

[67.45 ; 83.36]

Question
8Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y). /The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Toets vir betekenisvolle regressie. Gee die toets statistiek waarde./Test for significance regression. Give
the test statistic value.

2.306

143.4

5.04

5.3363

Question
9‘n Eenvoudige lineêre regressie
analise vir n = 20 data punte het die volgende resultate
gelewer: /A
simple linear regression analysis for n =20 data points produced the following
results:

?=
2.1 + 3.4x? x = 50 ? y =
212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal ‘n 95% vertrouensinterval vir die helling ?. /Find a 95% confidence interval of the slope ?.

[10.3767 ; 10.8233]

[2.9434 ; 3.8566]

[1.1381 ; 5.6619]

[2.9430 ; 3.8570]

[3.1907 ; 3.6093]

Question
10‘n Eenvoudige lineêre regressie
analise vir n = 20 data punte het die volgende resultate
gelewer: /A
simple linear regression analysis for n =20 data points produced the following
results:

?=
2.1 + 3.4x? x = 50 ? y =
212 SXX = 4.77 SXY =16.22 SYY= 59.21
Bepaal: Se2 /Determine: Se2

1.3971

10.283

0.2253

0.2138

2.7329

Question
11Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Vind ‘n 95% vertrouensinterval vir die verwagte eksamenpunt indien die
toetspunt 70 is./Find
a 95% confidence interval for the expected examination mark if the test mark is
70.

[71.97 ; 78.87]

[69.19 ; 81.65]

[69.01 ; 81.83]

[71.14 ; 79.70]

[67.45 ; 83.36]

Question
12Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The following
table shows the percentages obtained by 10 Biometry students in a test (X) and
the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Bereken die korrelasiekoeffisient./Calculate the correlation coefficient.

0.0011

0.7606

0.8721

0.9989

0.9980

Question
13Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Vind die persentasie variasie wat deur die regressie verklaar word. /Find the percentage of variation
explained by the regression.

0.0011 * 100

0.7606*100

0.8721*100

0.9989*100

0.9980*100

Question
14Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Bereken Se2./Calculate Se2.

17.93

4.23

143.4

11.97

Question
15Die volgende tabel toon die persentasies behaal
deur 10 Biometrie studente in ‘n toets (X) en die finale
eksamen (Y)./The
following table shows the percentages obtained by 10 Biometry students in a
test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Bereken SSE./Calculate SSE.

17.93

4.23

143.4

11.97

Question
16Die volgende tabel toon die persentasies behaal deur
10 Biometrie studente in ‘n toets (X) en die finale eksamen (Y)./The following table shows the percentages
obtained by 10 Biometry students in a test (X) and the final examination (Y).

X

75

80

93

65

87

71

98

68

84

77

Y

82

78

86

72

91

80

95

72

89

74

Vind ‘n 95% vertouensinterval vir die ? /Find the 95% confidence interval for the
?.

[0.60 ; 0.71]

[– 1.2040 ; 2.52]

[0.62 ; 0.69]

[– 0.62 ; 1.94]

Question
17Gegee die inligting van huisgrootte (X) in tien
vierkante meters en die verkoopprys (Y) in R 10000 van huise in Bloemfontein:
/Given the information on
home size (X) in ten squared metres and the sale price (Y) in R 10000 of houses
in Bloemfontein:

X

24

32

15

30

26

20

28

32

Y

60

98

36

84

78

50

82

104

Bereken SXX/Calculate SXX

970

252.875

3 872

207

Geeneen van bogenoemde. / None of the
above.5pt; background-image: initial; background-attachment: initial; background-size: initial; background-origin: initial; background-clip: initial; background-position: initial; background-repeat: initial;”>Question
18Gegee die inligting van huisgrootte (X) in tien
vierkante meters en die verkoopprys (Y) in R 10000 van huise in Bloemfontein:
/Given the information on
home size (X) in ten squared metres and the sale price (Y) in R 10000 of houses
in Bloemfontein:

X

24

32

15

30

26

20

28

32

Y

60

98

36

84

78

50

82

104

Bereken SYY/ Calculate SYY

970

525.875

3 872

207

Geeneen van bogenoemde. / None of the
above